

Cambridge International AS & A Level

	CANDIDATE NAME						
	CENTRE NUMBER				CANDIE NUMBE		
* 8 0	CHEMISTRY						9701/33
3 9	Paper 3 Advanc	ed Practical	Skills 1			Februa	ry/March 2022
79171*	You must answe You will need:	-			is listed in the confidential instructio	ns	2 hours
	 Write your if Write your a Do not use Do not writ You may use 	questions. k or dark blu name, centr answer to e an erasable e on any ba se a calcula	e numbe ach ques e pen or o r codes. tor.	r and ca tion in t correcti	use an HB pencil for any diagrams andidate number in the boxes at the the space provided. on fluid. use appropriate units.	• •	e.
	INFORMATION	1				Ses	sion
		ark for this of marks f			n or part question is shown in		
	brackets [].			estion paper.	Labo	ratory
	Important v	alues, cons		-	ards are printed in the		
		se in qualita	ative analy	/sis are	e provided in the		
	question pa	aper.				For Exam	iner's Use
						1	
						2	
						3	
						Total	

This document has **12** pages.

Quantitative analysis

Read through the whole method before starting any practical work. Where appropriate, prepare a table for your results in the space provided.

Show the precision of the apparatus you used in the data you record.

Show your working and appropriate significant figures in the final answer to each step of your calculations.

1 You will determine the concentration of sulfuric acid by reaction with a known concentration of sodium hydroxide using a thermometric method. The equation for the reaction is shown.

 $2NaOH(aq) + H_2SO_4(aq) \rightarrow Na_2SO_4(aq) + 2H_2O(I)$

FA1 is 1.90 mol dm⁻³ sodium hydroxide, NaOH. **FA 2** is dilute sulfuric acid, H_2SO_4 .

- (a) Method
 - Place the cup in the 250 cm³ beaker.
 - Use the 25 cm³ measuring cylinder to transfer 25.0 cm³ of **FA 1** into the cup. •
 - Place the thermometer into the solution in the cup and record its temperature in the table • of results.
 - Fill a burette with **FA 2**.
 - Run 5.00 cm^3 of **FA 2** into the solution in the cup.
 - Stir the mixture and record the highest temperature reached.
 - Repeat adding 5.00 cm³ volumes of **FA 2** into the solution in the cup until 45.00 cm³ has been added. Record the highest temperature reached after each addition.

Results

volume of FA 2 added/cm ³	0.00	5.00	10.00	15.00	20.00
temperature of solution/°C					
volume of FA 2 added/cm ³	25.00	30.00	35.00	40.00	45.00
temperature of solution/°C					

[3]

(b) (i) Plot a graph of temperature (y-axis) against volume of acid added (x-axis) on the grid provided. Select a scale on the y-axis to include a temperature 4.0 °C above the highest temperature you recorded.

Label any points you consider to be anomalous.

Draw two lines of best fit, one for the rise in temperature and one for after the maximum temperature has been reached.

Extrapolate the two lines so they intersect.

[4]

(ii) Use your graph to determine the volume of sulfuric acid, **FA 2**, required to neutralise 25.0 cm³ of sodium hydroxide, **FA 1**.

9701/33/F/M/22

volume of $H_2SO_4 = \dots m^3$ [1]

(iii) Calculate the concentration of sulfuric acid in FA 2.

concentration of $H_2SO_4 = \dots mol dm^{-3}$ [1]

(c) A student carrying out the same procedure used the results from their graph to determine the enthalpy of neutralisation for the reaction.

 $H^+(aq) + OH^-(aq) \rightarrow H_2O(I)$

(i) State how the student used their graph to determine the value of ΔT for use in the equation $q = mc\Delta T$.

......[1]

(ii) The student correctly calculated the value of ΔH for the reaction as $\Delta H = -55.2$ kJ mol⁻¹. The theoretical value for ΔH_{neut}^{e} given in the student's textbook is -57.6 kJ mol⁻¹.

Calculate the percentage error in the student's result compared with the theoretical value.

percentage error =% [1]

(iii) Suggest why the student's result was less negative than the theoretical value. Explain your answer.

.....

[Total: 12]

2 Solid sodium sulfite is often provided as the hydrated salt, $Na_2SO_3 \cdot xH_2O$, where x is an integer. You will determine x by using a solution of this sodium sulfite and reacting it with an excess of aqueous iodine.

 $Na_2SO_3(aq) + I_2(aq) + H_2O(I) \rightarrow Na_2SO_4(aq) + 2I^-(aq) + 2H^+(aq)$

The amount of iodine remaining will be determined by titration using a known concentration of sodium thiosulfate, $Na_2S_2O_3$.

 $I_2(aq) + 2S_2O_3^{2-}(aq) \rightarrow 2I^{-}(aq) + S_4O_6^{2-}(aq)$

FA 3 is a solution containing $31.50 \text{ g} \text{ dm}^{-3}$ of hydrated sodium sulfite, Na₂SO₃•*x*H₂O.

FA 4 is 0.100 mol dm⁻³ iodine, I_2 .

FA 5 is $0.100 \text{ mol dm}^{-3}$ sodium thiosulfate, $Na_2S_2O_3$.

FA 6 is starch indicator.

(a) Method

- Pipette **10.0** cm³ of **FA 3** into a conical flask.
- Pipette **25.0** cm³ of **FA 4** into the same flask.
- Swirl the flask to mix the contents.
- Fill the second burette with **FA 5**.
- Add **FA 5** to the flask until the mixture is yellow.
- Add approximately 10 drops of **FA 6**.
- Complete the rough titration by adding **FA 5** until the mixture is colourless.
- Record your burette readings in the space below.

The rough titre is cm³.

- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Make sure any recorded results show the precision of your practical work.
- Record, in a suitable form below, all of your burette readings and the volume of **FA 5** added in each accurate titration.

[1]

(b) From your accurate titration results, calculate a suitable mean value to use in your calculations. Show clearly how you obtain the mean value.

10.0 cm³ of FA 3 plus 25.0 cm³ of FA 4 required cm³ of FA 5. [1]

(c) Calculations

- (i) Give your answers to (c)(ii), (iii) and (iv) to an appropriate number of significant figures.
- (ii) Use your answer to (b) to calculate the amount, in mol, of sodium thiosulfate, FA 5, required to react with the excess iodine which remained in the conical flask.

amount of $Na_2S_2O_3 = \dots mol$

Hence calculate the amount, in mol, of iodine, FA 4, remaining in the conical flask.

amount of I₂ remaining = mol [1]

(iii) Calculate the amount, in mol, of iodine, FA 4, added to the conical flask.

amount of I₂ added = mol

Hence calculate the amount, in mol, of iodine that reacted with the 10.0 cm^3 of sodium sulfite, **FA 3**.

amount of I_2 that reacted with $Na_2SO_3 = \dots mol$ [1]

(iv) Use your final answer to (c)(iii) and the information on page 5 to calculate the amount, in mol, of sodium sulfite present in 1.00 dm³ of FA 3.

amount of Na_2SO_3 in 1.00 dm³ = mol [1]

(v) Use your answer to (c)(iv) to calculate the value of x in Na₂SO₃•xH₂O.

(d) A student suggests that sodium carbonate should be added to each mixture of sodium sulfite and iodine in the conical flask before titrating with sodium thiosulfate.

State whether you agree with the student. Explain your answer.

......[1]

[Total: 15]

Qualitative analysis

For each test you should record all your observations in the spaces provided.

Examples of observations include:

- colour changes seen
- the formation of any precipitate and its solubility (where appropriate) in an excess of the reagent added
- the formation of any gas and its identification (where appropriate) by a suitable test.

You should record clearly at what stage in a test an observation is made.

Where no change is observed you should write 'no change'.

Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.

If any solution is warmed, a boiling tube must be used.

Rinse and reuse test-tubes and boiling tubes where possible.

No additional tests should be attempted.

- **3 FA 7** and **FA 8** are solutions containing a total of three cations and two anions. Two of the cations and both of the anions are listed in the Qualitative analysis notes.
 - (a) (i) Carry out the following tests and record your observations. Use a fresh 1 cm depth of solution in a test-tube for each test.

toot	obser	vations
test	FA 7	FA 8
Test 1 Add a 1 cm depth of dilute nitric or hydrochloric acid and allow to stand for 2 minutes, then		
add a few drops of aqueous barium nitrate or aqueous barium chloride.		
Test 2 Add a few drops of acidified aqueous potassium manganate(VII).		
Test 3 Add a few drops of aqueous iron(III) chloride and allow to stand for 1 minute.		

(ii) From your test results, give the formulae of the anions present in **FA 7** and **FA 8**. If the tests do not allow you to positively identify an anion, write 'unknown'.

anion in **FA 7** = anion in **FA 8** =

[2]

(b) (i) Select reagents for tests to identify as many of the cations as possible in **FA 7** and **FA 8**. Carry out your tests and record your reagents, conditions and observations.

Qualitative analysis notes

1 Reactions of cations

cation	reaction	on with
	NaOH(aq)	NH₃(aq)
aluminium, Al ³⁺ (aq)	white ppt. soluble in excess	white ppt. insoluble in excess
ammonium, NH₄⁺(aq)	no ppt. ammonia produced on warming	_
barium, Ba²+(aq)	faint white ppt. is observed unless [Ba²+(aq)] is very low	no ppt.
calcium, Ca ²⁺ (aq)	white ppt. unless [Ca²+(aq)] is very low	no ppt.
chromium(III), Cr ³⁺ (aq)	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess
copper(II), Cu ²⁺ (aq)	pale blue ppt. insoluble in excess	pale blue ppt. soluble in excess giving dark blue solution
iron(II), Fe²+(aq)	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess
iron(III), Fe ³⁺ (aq)	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess
magnesium, Mg ²⁺ (aq)	white ppt. insoluble in excess	white ppt. insoluble in excess
manganese(II), Mn ²⁺ (aq)	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess
zinc, Zn ²⁺ (aq)	white ppt. soluble in excess	white ppt. soluble in excess

2 Reactions of anions

anion	reaction
carbonate, CO32-	CO ₂ liberated by dilute acids
chloride, C <i>l</i> ⁻(aq)	gives white ppt. with Ag ⁺ (aq) (soluble in $NH_3(aq)$)
bromide, Br⁻(aq)	gives cream/off-white ppt. with Ag ⁺ (aq) (partially soluble in $NH_3(aq)$)
iodide, I⁻(aq)	gives pale yellow ppt. with Ag ⁺ (aq) (insoluble in NH ₃ (aq))
nitrate, NO ₃ -(aq)	NH_3 liberated on heating with OH ⁻ (aq) and Al foil
nitrite, NO₂⁻(aq)	NH_3 liberated on heating with OH ⁻ (aq) and A <i>l</i> foil; decolourises acidified aqueous KMnO ₄
sulfate, SO ₄ ²⁻ (aq)	gives white ppt. with Ba ²⁺ (aq) (insoluble in excess dilute strong acids); gives white ppt. with high [Ca ²⁺ (aq)]
sulfite, SO ₃ ^{2–} (aq)	gives white ppt. with Ba ²⁺ (aq) (soluble in excess dilute strong acids); decolourises acidified aqueous $KMnO_4$
thiosulfate, $S_2O_3^{2-}(aq)$	gives off-white/pale yellow ppt. slowly with H ⁺

3 Tests for gases

gas	test and test result
ammonia, NH ₃	turns damp red litmus paper blue
carbon dioxide, CO ₂	gives a white ppt. with limewater
hydrogen, H ₂	'pops' with a lighted splint
oxygen, O ₂	relights a glowing splint

4 Tests for elements

element	test and test result
iodine, I ₂	gives blue-black colour on addition of starch solution

Important values, constants and standards

molar gas constant	$R = 8.31 \mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}$
Faraday constant	$F = 9.65 \times 10^4 \mathrm{C} \mathrm{mol}^{-1}$
Avogadro constant	$L = 6.022 \times 10^{23} \text{ mol}^{-1}$
electronic charge	$e = -1.60 \times 10^{-19} C$
molar volume of gas	$V_{\rm m} = 22.4 \mathrm{dm^3 mol^{-1}}$ at s.t.p. (101 kPa and 273 K) $V_{\rm m} = 24.0 \mathrm{dm^3 mol^{-1}}$ at room conditions
ionic product of water	$K_{\rm w} = 1.00 \times 10^{-14} {\rm mol^2} {\rm dm^{-6}}$ (at 298 K (25 °C))
specific heat capacity of water	$c = 4.18 \mathrm{kJ} \mathrm{kg}^{-1} \mathrm{K}^{-1} $ (4.18 J g ⁻¹ K ⁻¹)

						The Pe	Groun	The Periodic Table of Elements	ements							
							5	2			13	14	15	16	17	18
-	1					- т										² He
			Key			hydrogen 1.0										helium 4.0
			atomic number	_	I						5	9	7	8	6	10
		atc	atomic symbol	loc							В	ပ	z	0	ш	Ne
		relé	name relative atomic mass	ISS							boron 10.8	carbon 12.0	nitrogen 14.0	oxygen 16.0	fluorine 19.0	neon 20.2
											13	14	15	16	17	18
											Al	Si	٩	თ	Cl	Ar
magnesium 24.3 3		4	5	9	7	80	0	10	11	12	aluminium 27.0	silicon 28.1	phosphorus 31.0	sulfur 32.1	chlorine 35.5	argon 39.9
		22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
လိ	o	F	>	ŗ	Mn	Fе	ပိ	īŻ	Cu	Zn	Ga	Ge	As	Se	Br	Кr
scandium 45.0	um O	titanium 47.9	vanadium 50.9	chromium 52.0	manganese 54.9	iron 55.8	cobalt 58.9	nickel 58.7	copper 63.5	zinc 65.4	gallium 69.7	germanium 72.6	arsenic 74.9	selenium 79.0	bromine 79.9	krypton 83.8
8		40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
~		Zr	qN	Mo	Ц	Ru	Rh	Pd	Ag	Cq	In	Sn	Sb	Те	Ι	Xe
yttrium 88.9	£σ	zirconium 91.2	niobium 92.9	molybdenum 95.9	technetium -	ruthenium 101.1	rhodium 102.9	palladium 106.4	silver 107.9	cadmium 112.4	indium 114.8	tin 118.7	antimony 121.8	tellurium 127.6	iodine 126.9	xenon 131.3
57-71	11	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
lanthar	loids	Ħ	Ta	8	Re	SO	Ir	Ŧ	Au	Hg	11	Pb	Ξ	Ро	At	Rn
		hafnium 178.5	tantalum 180.9	tungsten 183.8	rhenium 186.2	osmium 190.2	iridium 192.2	platinum 195.1	gold 197.0	mercury 200.6	thallium 204.4	lead 207.2	bismuth 209.0	polonium –	astatine 	radon _
89-103	33	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
actinoids	sp	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	ы	ЧN	Fl	Mc	2	Ts	Og
		rutherfordium -	dubnium –	seaborgium -	bohrium –	hassium -	meitnerium -	darmstadtium -	roentgenium -	copernicium -	nihonium –	flerovium -	moscovium -	livermorium –	tennessine -	oganesson -
2	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
<u> </u>	b		Pr		Pm	Sm	Еu	Gd	Tb	D	Ю	ч	Tm	Υb	Lu	
lanthanum 138.9	mnu 6:		praseodymium 140.9		promethium -	samarium 150.4	europium 152.0	gadolinium 157.3	terbium 158.9	dysprosium 162.5	holmium 164.9	erbium 167.3	thulium 168.9	ytterbium 173.1	lutetium 175.0	
89		06	91	92	93	94	95	96	97	98	66	100	101	102	103	
Ac	с	Тh	Ра		Np	Pu	Am	CB	푅	Ç	Es	Е'n	Md	No	Ļ	
actinium -	Ш	thorium 232 ()	protactinium 231.0	uranium 238.0	neptunium -	plutonium –	americium	curium	berkelium 	californium _	einsteinium –	fermium -	mendelevium -	nobelium -	lawrencium -	

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

PMT